
Theoretical Computer Science 40 (1985) 31-55
North-Holland

31

T H E S M A L L E S T A U T O M A T O N R E C O G N I Z I N G T H E
S U B W O R D S O F A T E X T *

A. BLUMEK, J. B L U M E R and D. HAUSSLER
Department of Mathematics and Computer Science, University of Denver, Denver, CO 80208, U.S.A.

A. E H R E N F E U C H T
• Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80302, U.S.A.

M.T. C H E N
Department of Computer Science, University of Nanfing, Nanfing, Jiangsu, People" s Republic of China

J. SEIFERAS
Department of Computer Science, University of Rochester, Rochester, N Y 14627, U.S.A.

Abstract. Let a partial deterministic finite automaton be a DFA in which each state need not have
a transition edge for each letter of the alphabet. We demonstrate that the smallest partial DFA
for the set of all subwords of a given word w, Iwl>2, has at most 21w[-2 states and 3[wl-4
transition edges, independently of the alphabet size. We give an algorithm to build this smallest
partial DFA from the input w on-line in linear time.

Introduction

In the classic string matching pioblem for text, we are given a text w and a pattern
string x and we want to know if x appears in w, i.e., if x is a subword of w. Standard
approaches to this problem involve various methods for preprocessing x so that the
text w can be searched rapidly [1, 9, 16]. Since each search still takes time propor-
tional to the length of w, this method is inappropriate when many different patterns
are examined against a fixed text, e.g., for repeated lookups in any fixed textual
database. In this case, it is desirable to preprocess the text itself, building an auxiliary
data structure that allows one to determine whether x is a subword of w in time
proportional to the length of x, not w. Data structures with this property (known
as 'suffix trees' or 'compact position trees', earlier as 'PATRICIA trees') have been
developed [17, 19, 21, 23, 24, 25, 26, 28] and used in a wide variety of pattern
matching applications, in addit ion to the classic string matching problem given
above (e.g., [2, 3, 4, 5, 22, 27]).

Clearly, a deterministic finite automaton (DFA) that recognizes the set of all
subwords of w would serve as an auxiliary index for w in the above sense. We can

* Part of this work was done while M.T. Chen visited the University of Rochester. A. and J. Blumer
and D. Haussler gratefully acknowledge the support of NSF Grant IST-8317918, A. Ehrenfeucht the
support of NSF Grant MCS-8305245, and J. Seiferas the support of NSF Grant MCS-8110430.

0304-3975/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)

32 A. Blumer et aL

also allow this automaton to be partial, i.e., such that each state need not have a
transition on every letter. We demonstrate the feasibility of this approach by
exhibiting a partial DFA that recognizes the set of subwords of w and has less than
2]w[states and 31wl transition edges (independently of the size of the alphabet of
w). This DFA can be built in linear time for any fixed alphabet size by an algorithm
that operates on-line in the strong sense that the DFA is correct after each letter is
processed. As all states of this automaton are accepting, it can be viewed as a
directed acyclic graph, which we call the Directed Acyclic Word Graph, or DAWG
[6]. Crochemore [14] has pointed out that with a different assignment of accepting
states, this DFA is the smallest automaton for the set of all suffixes of w. While it
is not the smallest automaton for the subwords of w, with some additions and
modifications to the DAWG construction algorithm we derive an algorithm that
builds the smallest partial DFA for this language. This algorithm also runs in linear
time, and is on-line in the strong sense. These automata can be used in place of
suffix trees or compact position trees in most of the applications of these data
structures cited above, and have additional desirable properties that in some cases
make them more useful [7, 13].

The algorithm that builds the DAWG (or, with a linear postprocessing phase
added, the smallest DFA for all suffixes of a word) can be viewed as an extension
of earlier algorithms used to build the compact position tree [21, 23, 28]. The linear
bound on the running time is obtained by employing auxiliary pointers that, if.
reversed, form a structure equ!valent to the compact position tree of Weiner for the
reverse of w. In contrast, the goal of Weiner's algorithm is to build the compact
position tree for w, which it does by processing w from right to left, maintaining
auxiliary pointers that form part of the DAWG for the reverse of w. Pratt's algorithm
can be seen as an intermediate step between Weiner's algorithm and ours, since it
is closely patterned after Weiner's algorithm, but is designed to build a structure
that forms part of the DAWG for w by processing w from left to right, maintaining
the compact position tree as an auxiliary structure as in our algorithm. Slisenko's
algorithm is essentially the same as Pratt's, but more ambitious applications lead
to an extra measure of additional structure. A more detailed comparison of our
algorithm with earlier algorithms can be found in [10, 11], where it is given from
Weiner's point of view. The approach taken in this paper follows that used in [27],
where a graph closely related to that of [21] is constructed. Modifications to the
DAWG algorithm needed to construct the smallest DFA for the subwords of a word
have been given independently by Crochemore [12], who also gives precise bounds
for this latter DFA.

Notation

Throughout this paper, .Y denotes an arbitrary nonempty finite alphabet and £ *
denotes the set of all strings (words) over .Y. The empty word is denoted by A. w

Smallest automaton recognizing the subwords o f a text 33

will always denote an (arbitrary) word in Z*, and a a letter in ,Y. Iw[denotes the

length of w. If w = xyz for words x, y, z ~ Z*, then y is a subword of w, x is a prefix
of w, and z is a suffix of w. In addit ion to the standard terminology for finite
automata, we use the term partial DFA (for the alphabet ,Y) for a deterministic

finite automaton in which each state need not have a transition for every letter of
,Y. (Lack of any transit ion needed for a word signifies rejection of that word.) The

smallest partial DFA for a given language is the partial DFA that recognizes the
language and has the smallest number of states. (Uniqueness follows from Nerode's

theorem [15, 20].) As usual, an equivalence relation - on Z* is right invariant if,

for any x, y, z~ £ * , x - y implies that x z - yz.

1. The directed acyclic word graph

We begin with a brief look at some aspects of the subword structure of a fixed,

arbitrary word w. In particular, for each subword y of w we will be interested in

the set of positions in w at the ends of occurrences of y. This is essentially the same
approach as that taken in [27].

Definition. Let w = a l . . . a , (a l , . . . , a , ~ Z) be a word in ,Y*. For any nonempty y

in ,Y*, the end-set of y in w is given by end-setw(y)={i: y = ai_lyl+l.., ai}. In
particular, end-setw(A)={O, 1 , 2 , . . . , n } . We say that x and y in Z* are end-
equivalent (on w) if end-setw(X)= end-setw(y), and we denote this by x - ~ y . We
denote by [x]~ the equivalence class of x with respect to - ~ . The degenerate class
is the equivalence class of words that are not subwords of w (i.e., words with empty

end-set).

For illustrations of these definitions, see Fig. 1.

w = a b c b c

0 1 2 3 4 5

end-setw(bc) = end-setw(c) = { 3, 5 }

hence bo =_wC

Fig. 1.

The following lemma summarizes some obvious properties of end-equivalence.

Lemma I.I. (i) End-equivalence is a right-invariant equivalence relation on ~*.
(ii) I f two words are end-equivalent, then one is a su.O~x of the other.

34 A. Blumer et al.

(iii) Two words xy and y are end-equivalent i f and only i f every occurrence of y is

immediately preceded by an occurrence of x.
(iv) A subword x o f w is the longest member o f Ix] i f and only i f either it is a prefix

o f w, or it occurs in two distinct immediate left contexts (i.e., both ax and bx occur,

for some distinct a, b ~ ,Y,).

We see from Lemma 1.1 that there are really three ways to look at the nondegener-
ate equivalence classes of --w. We can look at them as the set of distinct end-sets
for the subwords of w, as a partition of the subwords of w, or as a set of canonical
members of this partition, formed by taking the longest word in each equivalence
class. For the latter viewpoint, we will say that the longest member of [x] w (canonically)

represents the equivalence class [X]w.
Taking advantage of right invariance, we can consistently define a (partial)

deterministic finite automaton as in Nerode's well-known construction [15, 20].

Definition. The Directed Acyclic Word Graph (DAWG) for w is the (partial) deter-
ministic finite automaton Dw with input alphabet ,Y, state set {Ix]* I x is a subword
of w}, start state [A] , all states accepting, and transitions {[x]~--~ [xa]~[x and

xa are subwords of w}.

D~ is illustrated for the word w = abcbc in Fig. 2(a), (b). Since the states of D~
are exactly the nondegenerate classes of -= w, we shall use the terms 'state' and 'class"
interchangeably throughout the remainder of this paper.

Lemma 1.2. Dw recognizes the set of all subwords of w.

Proof. This follows directly from Nerode's theorem, since the union of the
equivalence classes that form the accepting states of D~ is exactly the set of subwords

ofw. []

It is easily verified that Dw is not always the smallest partial DFA for the subwords
of w (see Section 3 and Fig. 4). However, as we shall show below, worst-case size
bounds for Dw are not significantly higher than those for the smallest DFA. In
addition, the correspondence between the states of Dw and the end-sets of the
subwords of w is useful in some applications [7], and makes the on-line algorithm
for D~ somewhat simpler than that for the smallest automaton. As a result, we will
approach the construction of the smallest automaton for the subwords of w by first
developing an on-line algorithm for D~, and then making the necessary modifications
to this algorithm needed to build the smallest DFA.

A close relative of Dw is also of some interest from a theoretical point of view.

Definition. Let Sw denote the partial DFA defined as Dw except that the only

Smallest automaton recognizing the subwords of a text 35

accepting states are those equivalence classes that include suffixes of w (i.e., whose
end-sets include the position Iwl).

Proposition 1.3 (Crochemore). For any w ~ .Y*, Sw is the smallest partial D F A that
recognizes the set o f all suJ~xes of w.

Proof. By design, the set of suffixes of w is the union of the equivalence classes
that are accepting states in S~. Hence, S~ recognizes the set of suffixes of w, by
Nerode's theorem [15, 20]. To prove minimality (again by Nerode's theorem), we
need only note that, for any x, y ~ ,Y*, x---w y if, for all z e Z*, xz is a suffix of w
exactly when yz is a suffix of w. []

We now derive bounds on the maximum number of states and edges in the
automaton D~, in terms of the length of w. For this and for the development in
Section 2 of an algorithm to construct D~ it will help to look at the (nondegenerate)
states from the end-set point of view. If two strings' end-sets meet, then one of the
strings must be a suffix of the other, so that one of the end-sets must be a superset
of the other. Therefore, the (nonempty) subsets of {0, 1, 2 , . . . , [w[} that are end-sets
form a subset tree T(w) (see Fig. 3(a)).

Lemma 1.4. I f x canonically represents an equivalence class modulo --~, then the
children o f [x]w in T(w) are those classes [ax]~for which a ~ ~ and ax is a subword

ofw.

Proof. The children of [x]w correspond to the maximal proper subsets of end-
set~(x) that are end-sets. Any such end-set must be end-setw(vx) for some nonnull
word v. As a canonical representative, x is the longest subword with its end-set; so,
we already get the children for Ivl = 1. []

It follows from Lemma 1.4 that when w begins with a unique letter, T(w) is
isomorphic to the compact position tree of Weiner for the reverse of w [28], except
that its edges are unlabeled. This is illustrated in Fig. 3(a), (b).

Lemma 1.5. Let Iwl> 2, Dw has at most 21wl-1 states, and this upper bound is
achieved i f and only i f w = ab n for some a, b ~ .Y, a # b.

Proof. In the special case that w is of the form a n for n > 2, T(w) is a simple chain
of n + 1 < 2 n - 1 nodes. In the remaining case, we show that T(w) has at most Iwl
nonbranching nodes (nodes of degree less than 2), and hence at most Iwl-1
branching nodes, for a total of at most 21wl- 1.

By Lemma 1.4, any branching node in T(w) occurs in at least two distinct left
contexts. By Lemma 1.1(iv), the only possible other (nonbranching) nodes are the
Iwl + 1 prefixes of w. Since w is not of the form a n, however, one of these prefixes,

36 A. Blumer et aL

2,3,4,5

b

2, 4

3, 5

b

\ o

Fig. 2(a). Dw with classes denoted by end-sets.

the null one, appears in two distinct left contexts and so, by Lemma 1.4, is not a

nonbranching node. This completes the proof of the upper bound.
To reach the upper bound, we need]w]-1 branching nodes. This generates at

least Iwl leaves. Since only the [w[nonnull prefixes of w can be nonbranching nodes,
they must all be leaves, and every internal node must have exactly two children. In
particular, the one-letter prefix of w must be a leaf; so, by Lemma 1.4, that first
letter cannot occur elsewhere in w. Since the null string (the root) can have only
one other child beside the one-letter prefix, only one other letter can occur, and w
must be of the form ab". Conversely, it is easy to verify that the subwords of ab"

do in fact generate 2 (n + l) - I distinct end-sets for any n>~ 1, to complete the
proof. []

Lemma 1.6. For Iw] >i 2, there are at most]w I - 2 more edges than nodes in the transition

graph o f D~

Smallest automaton recognizing the subwords o f a text 37

a c

bC, C

ab

abc

abcb,
bcO, cb

abcbc,
bcbc, cbc

Fig. 2(b). Dw with classes explicitly given.

ProoL Note that the transitions of Dw form a directed acyclic graph with one source
([A]w) and one sink ([w]~). Every state of Dw lies on a path from the source to the
sink, and the sequence of labels on each such distinct path forms a distinct nonempty

suffix of w.
Any such directed acyclic graph has a directed spanning tree rooted at its source,

so focus on one. Being a tree, it will have one fewer edges than nodes; so it only
remains to show that at most Iwl- 1 edges of Dw are left out of the spanning tree.

With each edge of D~ not in the spanning tree, we associate one of the Iw[
nonempty suffixes of w. We obtain that suffix from the labels on a directed path
going from the source, through the spanning tree to the tail of the omitted edge,
across the omitted edge, and finally on to the sink in any convenient way. Distinct
omitted edges are associated with distinct nonempty suffixes, because they are
associated with distinct source-to-sink paths. (The paths differ in the first edge
traversed outside the spanning tree.) One source-to-sink path lies entirely within
the spanning tree, so its nonempty suffix is not assigned; therefore, the number of

38 A. Blumer et aL

S
S

f

0, 1~
2,3,4,5,

!

I
!

2, 4

%%
%

%
%

/
/

/

//
/ /

/ / /

3, 5

%
%

%

Fig. 3(a). T(w) superimposed on Dw.

assigned nonempty suffixes is bounded by [w[-1, and so is the number of edges
not in the spanning tree. []

Combining Lemmas 1.5 and 1.6, we obtain the following result.

Theorem 1.7. For Iw[>2, the Directed Acyclic Word Graph for w (and hence the
smallest partial DFA that recognizes the set of suJ~ixes of w) has at most 2[w I - 1
states and 31w1-4 transition edges.

Proof. The bound on the number of states directly follows from Lemma 1.5.
Straightforward combination of Lemmas 1.5 and 1.6 yields a slightly too weak bound
of 31wl-3 on the number of transition edges. We noted, however, that the bound
in Lemma 1.5 can be improved by at least 1 except when w is of the form ab", in

Smallest automaton recognizing the subwords of a text 39

a

cba

ba

bcba

Fig. 3(b). Compact position tree for the reverse of w.

which case Dw has only 21 w l - 1 transition edges. In either case, therefore, the bound
can be improved by at least 1. []

It is readily verified that our upper bound on the number of transition edges is
achieved when w = ab"c for n i> 1 and distinct letters a, b, and c.

2. On-line algorithm for Dw

We now consider the problem of constructing Dw in an on-line fashion, processing
the letters of w from left to right. At each stage of our construction, the automaton
will be correct for the prefix of w that has been processed. This also gives an
algorithm to construct S,, since the accepting states of Sw can be marked in a final
step, when all of the letters of w have been processed.

The work that needs to be done for each new letter that is processed can be
described by analyzing the difference between the set of nondegenerate equivalence

40 A. Blumer et al.

classes of m~, representing the states of D~, and those of m wo, representing the

states of D,o, for an arbitrary word w and letter a. The following definitions will

be needed.

Definition. tail(w) is the longest suffix of w that occurs more than once in w.

For example, tail(abcbc) = bc, tail(aaa) = aa, and tail(aab) = A.

Definition. Let w = wlyw 2 with w~, w2, y ~-Y*, y # A. This occurrence of y in w is

the first occurrence o f y in a new left context if y occurs at least twice in w~y and

there exists an a e ,~ such that every occurrence of y in w~y except the last one is

preceded by a. By convention, A never occurs in a new left context.

For example, if w = abcbc, then the second occurrence of bc is the first occurrence

of bc in a new left context. This is not true if w = bcbc, since we must have all

previous occurrence of bc preceded by some letter (which must also be the same

letter in all cases).

The following lemma summarizes the modifications that must be made to update

the nondegenerate classes of --~ to those of -= ~o.

Lemma 2.1. (i) wa always represents an equivalence class in ~ a , consisting o f all

subwords o f wa that are not subwords o f w.

(ii) For any subword x o f w, i f x represents an equivalence class in --w, then x

represents an equivalence class in -~ wo. The members o f this class are the same in both

cases, unless x - ~ tail(wa) and tail(wa) appears for the first time in a new left context.

In this case, [x]w is split into two classes in =wo, with words longer than taii(wa)

remaining in [x]~° and others going into a new class [tail(wa)]wo, represented by

ta i l (w°) .

(iii) There are no equivalence classes in ~ ~,, beyond those given in (i) and (ii).

Proof. (i) wa, being a prefix of itself, will always represent an equivalence class in

---w,,. The members of this class will be subwords of wa whose end-sets include only

the last position in wa, which are exactly the new subwords of wa, not already
occurring in w.

(ii) Any word that is either a prefix of w or occurs in two distinct left contexts

in w will also do so in wa. Hence, if x represents an equivalence class in -~w, then

it represents an equivalence class in -- wo.

We now consider the circumstances under which [x] , # [X]wo. It is clear that

every word in [x]wo must also be in [x]~, since the positions of w are a subset of

those of wa. Hence, we need only consider the case when there is a y e [x]w that
fails to be in [X]~o. Let y be the longest such word in [x]~. By Lemma 1.1(ii), x = uby

for some u e £ * and b e £. Since y ~ [x]~, y occurs in w and every occurrence of
y in w is preceded by ub. Since we also have y ~ [X]wa, y must occur as a suffix of

wa, not preceded by ub. If by is a suffix of wa, then by ~ x and by =-w.,y, contradict-
ing the maximality of y. Hence, cy is a suffix of wa for some letter c # b. Since cy

Smallest automaton recognizing the subwords of a text 41

cannot occur in w, it follows that y = mil(wa) and tail(wa) appears for the first time
in a new left context. Furthermore, y and all its suffixes in [x]w will occur as suffixes
of wa, while words in [X]w longer than y will not. Hence, [x]~ will be split into
two classes in --wa, one represented by y = tail(wa) containing itself and the shorter
words, and the other represented by x containing the remaining words. The result
follows.

(iii) By parts (i) and (ii), all of the subwords of wa have been accounted for.
Hence, there can be no other equivalence classes. []

To allow efficient update of Dw to Dwa we annotate D~ with two additional types
of information, which are maintained throughout the construction. First, each
transition edge is designated as either primary or secondary. A transition edge labeled
a from the class represented by x to the class represented by y is primary if xa = y,
otherwise it is secondary. Second, each state except the source has a pointer called
a suffix pointer that points to the parent of the state in the tree T(w), introduced in
the previous section. For any word x that represents an equivalence class in - ~ ,
the suffix chain starting at x, denoted SC(x), is the sequence of classes that form
the path from x to the root of T(w). Isc(x)l denotes the length of this sequence.

The following consequences of these definitions are easily verified.

Lemma 2.2. (i) For any word x that represents an equivalence class in -= ~, SC(x)
partitions the sufftxes of x into ISC(x)[classes. In particular, if x =w, then the
equivalence classes of all suffixes of w can be located (iri order of decreasing length of
suffix) by traversing the chain of suffix pointers from the sink of Dw back to the source

of Dw.
(ii) I f w ~ A, the su f f i pointer of the sink of Dw points to [tail(w)]~.

(iii) The first class encountered by traversing the chain of suf f i pointers from the
sink of D~ back to the source of Dw that has an a-transition (if any) must have an
a-transition to [tail(wa)]~. I f no a-transition is encountered, then a occurs only once
in wa, and hence tail(wa)= A.

Thus the addition of suffix pointers allows us to locate the one class in D~-that
may need to be split when updating Dw to Dw, (Lemma 2.1(ii)). The primary versus
secondary designation of transition edges allows us to tell whether or not this class
needs to be split, as demonstrated in the following.

Lemma 2.3. Let tail(wa)=xa. Then x represents an equivalence class in ~-w and
tail(wa) appears for the first time in a new left context if and only if there is a secondary
transition edge from [x]w to [xa]w in D~

Proof. Since xa = tail(wa), x is a suffix of w and xa occurs in w, implying that x
occurs at least twice in w. If every occurrence of x in w is preceded by the same
letter b, then bxa occurs twice in wa, contradicting the maximality of tail(wa).
Hence, x represents an equivalence class in ---w by Lemma 1.1(iv). Since xa occurs

42 A. Blumer et al.

in w, there must be an a-transition edge from [x]~ to [xa]w. This edge is secondary
if and only if xa does not represent [xa]~. By Lemma 1.1(iv) this happens only
when every occurrence of xa in w is preceded by the same letter, i.e., if and only
if xa is occurring for the first time in a new left context as tail(wa). []

The strategy of the algorithm for updating Dw to Dwo, along with its annotations,
is to create a new state for the class represented by wa and then traverse the suffix
chain from the sink of D~ putting in the necessary a-transitions to the new state
until a state on the chain is found that already has an a-transition. This transition
will lead to [tail(wa)lw. If the transition is primary, then no more work needs to
be done save the addition of a new suffix pointer from the new state to [tail(wa)]~
(= [tail(wa)]wo). If it is secondary, then [tail(wa)]w must be split into two states,
and all of the transitions and suffix pointers that need to be modified can be located
by examining the old transitions and suffix pointer from [tail(wa)] ~, and by continu-
ing to traverse the suffix chain toward the source of D~. A special case arises when
no state with an a-transition is encountered on the suffix chain from the sink of
D~. However, in this case no split needs to be performed, and the processing is
analogous to the case where there is a primary edge to [tail(wa)]~

The linear time bound for the algorithm depends critically on the fact that the
suffix chain is traversed from the sink toward the source, so that states on this chain
near the source which are not involved in the update are not visited. Any method
which visits all states on this chain in every update (e.g., a method like that in [17]
for updating position trees) would accumulate O(n 2) time in the worst case (e.g.,
on the string a ").

To illustrate some stages of construction, a sequence of D , for w = abe, abcb,
abcbc, abcbcd is illustrated in Fig. 4. These are compared to the corresponding
smallest automata for the same languages, discussed in the next section.

We now give a detailed description of the algorithm to build Dw, and a proof of
its linear time bound. The algorithm is given below as three procedures, builddawg,
update, and split. Procedure builddawg is the main procedure, which takes as input
a word w, builds Dw by processing w on-line letter by letter, and returns the source.
After each letter is processed, D , and all its annotations are correct for the prefix
of w up to this point. With each new letter, builddawg modifies the current D , by
calling the procedure update, giving update the letter to be processed and the current
sink state.

Procedure update takes this information and in step 1 (see Algorithm A below)
creates a new state, the new sink for D,o, which forms the new equivalence class
represented by wa (Lemma 2.1(i)). Transition edges labeled a and pointing to this
state must come from all states containing suffixes of w that do not have a-transitions
in Dw since this new state represents the class of strings that occur only as a suffix
of wa. The primary edge from [w]w (the sink of D~) is added in step 1, before the
algorithm enters the while loop in step 3. The while loop sets currentstate to states
containing successively shorter suffixes of , , at each iteration (Lemma 2.2(i)). Thus,

Smallest automaton recognizing the subwords of a text 43

primary edges
secondary edges

Dab c = Mab c

c splits = 0
tail =
stem is undefined

c

Dabcb - Mab c

splits = 1
tail = b
stem = b

Dabcbc Mabcbc

splits = 2
tail = bc
stem = b

Dabcbcd

= Mabcbcd

 ¢c,0
b Lebl ! cN,;

splits = 0
tail =
stem is undefined

Fig . 4. Illustration of Algorithms A and B for w = abcbcd.

in step 3(b), case (1), the lack of an a-transition edge leads to the addition of the
remaining transition edges to the new sink. Clearly, these must be secondary edges.

When the first transition edge labeled a is found from a suffix of w, this edge
leads to [tail(wa)]w (Lemma 2.2(iii)). If it is primary, then no further changes need
to be made to the equivalence classes of - w and hence to their transition edges and
suffix pointers (Lemmas 2.3 and 2.1(ii)). Step 3(b), case (2) handles this case by
simply setting sufftxnode to [tail(wa)]w (= [tail(wa)]wo), causing a break from the
while loop. If it is secondary, then [tail(wa)]w must be split. The call to the function
split in step 3(b), case (3) handles all of the updates to the equivalence classes of
-=~ necessitated by this split (as given in Lemma 2.1(ii)), including those changes
to the associated transition edges and suffix pointers, and returns a pointer to the

44 A. Blumer et aL

new equivalence class for tail(wa). Thus, in either case, the variable suOixstate
becomes set to [tail(wa)]w,~ and we break out of the while loop. A special case
occurs when no state on the suffix chain has an a-transition edge. In this case the
loop stops because it has reached the source, which is the equivalence class of
A = tail(wa) (Lemma 2.2(iii)). Since A can never occur for the first time in a new
left context, no further classes or transition edges need to be modified. In step 4,
sufftxstate is set to the source, which is [tail(wa)]w~ in this case. Finally, the suffix
pointer of the new sink is set to point to [tail(wa)]wa (Lemma 2.2(ii)) and the new
sink for the fully updated structure is returned.

Procedure split takes the class that contains the subword x such that xa = tail(wa)
(parentstate) and the class that contains tail(wa) (childstate), and 'splits' childstate,
adjusting all affected transition edges and suffix pointers. It begins in step 1 by
creating newchildstate, which is [tail(wa)]w,,. Since newchildstate is represented by
tail(wa) and parentstate is represented by x, there must be a primary a-transition
from parentstate to newchildstate (Lemma 2.3). This is installed in step 2. Step 3
adds the edges that come out of newchildstate, which clearly must be copies of the
edges out of childstate, with the exception that they are all secondary, since newchild-
state contains only the shorter words from [tail(wa)]w (Lemma 2.1(ii)). Steps 4 and
5 make appropriate adjustments to the suffix pointers, as is easily verified. Finally,
the edges coming into childstate must be partitioned, so that those coming from
classes whose elements are shorter than tail(wa) now point to newchildstate. These
classes clearly contain only suffixes of x, and are therefore in the suffix chain of
parentstate. The redirection of these edges is handled in step 7, before [tai l(wa)]~
is returned in step 8.

Algorithm A

builddawg(w)
1. Create a state named source and let currentsink be source.
2. For each letter a of w do:

Let currentsink be update(currentsink., a).
3. Return source.

update (currentsink, a)
1. Create a state named newsink and a primary edge labeled a from currentsink

to newsinl~
2. Let currentstate be currentsink and let sufflxstate be undefined.
3. While currentstate is not source and sufftxstate is undefined do:

(a) Let currentstate be the state pointed to by the suffix pointer of currentstate.
(b) Check whether currentstate has an outgoing edge labeled a.

(1) If currentstate does not have an outgoing edge labeled a, then create
a secondary edge from currentstate to newsink labeled a.

(2) Else, if currentstate has a primary outgoing edge labeled a, then let
suffzxstate be the state to which this edge leads.

Smallest automaton recognizing the subwords of a text 45

(3) Else (currentstate has a secondary outgoing edge labeled a):
(a) Let childstate be the state that the outgoing edge labeled a leads

to.

(b) Let suO~xstate be split(currentstate, childstate).
4. If suffL, cstate is still undefined, let suffL~state be source.
5. Set the suffix pointer of newsink to point to suj~ixstate and return newsink.

split(parentstate, childstate)
1. Create a state called newchildstate.
2. Make the secondary edge from parentstate to childstate into a primary edge

from parentstate to newchildstate (with the same label).
3. For every primary and secondary outgoing edge of childstate, create a secondary

outgoing edge of newchildstate with the same label and leading to the same state.
4. Set the suffix pointer of newchildstate equal to that of childstate.
5. Reset the suffix pointer of childstate to point to newchildstate.
6. Let currentstate be parentstate.
7. While currentstate is not source do:

(a) Let currentstate be the state pointed to by the suffix pointer of currentstate.
(b) .If currentstate has a secondary edge to childstate, make it a secondary edge

to newchildstate (with the same label).
(c) Else, break out of the while loop.

8. Return newchildstate.

We now establish an upper bound on the time required for Algorithm A.

Lemma 2.4. I f x represents a class in Dw with a primary a-transition edge leading to
a class represented by y, then Isc(y)l=lsc(x)l-k+ 1, where k is the number of
secondary edges from states in SC(x) to states in SC(y).

Proof. Since the edge from x to y is primary, y = xa. Since y ends in a, every class
in SC(y) must have an incoming a-transition except the source of D~, which lies
at the end of SC(y). Further, for any such class on SC(y) all incoming a-transitions
must be from classes containing suffixes of x, which in turn must lie on SC(x).
Exactly one incoming a-transition will be primary for each class in SC(y), the others
will be secondary. Since each class in SC(x) can have only one a-transition, the
result follows. []

Lemma 2.5. The execution time for Algorithm A is linear in the length of w for any
w over a fixed finite alphabet ,Y.

Proof. We will assume that appropriate data structures are employed for states,
transitions, and suffix pointers of Dw such that all of the basic operations on these
structures, including creating new states and transitions, redirecting transitions, and
finding transitions from given states on given letters can be accomplished in constant

46 A. Blumer et al.

time. Since the size of the alphabet is constant and the automaton is deterministic
(i.e., there is at most one transition from a state for each distinct letter), this is
trivial: we can use a simple linked list of transitions for each state. Thus, each of
the individual steps in update and split take constant time, with the exception of
the while loops.

Consider a single call to update(currentsink, a), returning newsink, where current.
sink = [w]w and newsink = [wa]wa. Let the total number of times the bodies of these
loops are executed during this call be k, not counting the final pass that causes the
exit from each loop. For each such iteration of either of these loops, a secondary
edge is installed in D,o from a state on the suffix chain of [w]wa to either [wa]w,,
or [tail(wa)]~o, both on the suffix chain of [wa]wo (Lemma 2.2(i)). Hence,
ISC(wa)[~< [SC(w)l - k + 1 in Dw~ by Lemma 2.4. In the special case when [tail(wa)]w
lies on the suffix chain of [w]~ in D~ and the update of D~ involves splitting this
class, IscCw)l in D~a is equal to [SC(w)[in Dw plus one. Otherwise, [SC(w) t is the
same in D~ and Dwo. Thus, in any case, ISC(wa)[in Dwo is less than or equal to
ISC(w)I in D~ minus k plus two.

Each time update is called from builddawg, currentsink = [w]~ in Dw before the
call and currentsink is set to [waldo in Dw~ after the call, for some w and a. The
suffix chain of currentsink has length one for the first call to update at the beginning
of construction, never has zero length, and by the above argument can grow at most
two states longer in each cell to update. Since the length of this chain decreases by
an amount proportional to the number of iterations of the while loops in update
and split on each call, this implies that the total number of iterations of these loops
during the entire construction of Dw is linear in the length of w. Since all other
steps of the algorithm take constant time for each letter processed, it follows that
the algorithm is linear in the length of w. []

Theorem 2.6. For any w over a fixed finite alphabet ~,, both Dw and Sw can be built
in time linear in the length of w.

Sketch of proof. The above description of Algorithm A indicates how it can be
shown that this algorithm correctly constructs Dw on-line. Further details can be
found in [8]. Hence, Dw can be built in linear time by Lemma 2.5. To build S~, we
simply need to mark the classes of Dw that contain suffixes of w as accepting states,
letting the other states be nonaccepting. Since all of these classes lie on the suffix
chain from the sink of Dw to the source (Lemma 2.2(i)), it is a simple matter to
mark them, and it clearly requires time at most proportional to the length of w. []

3. The smallest automaton for the set of all subwords

We now have an algorithm that builds Dw on-line in linear time. Next, we turn
our attention to the smallest partial DFA that recognizes the set of all subwords of
w, which we will denote M~.

Smallest automaton recognizing the subwords of a text 47

In some cases, M~ can be considerably smaller than D~ For" example, if w = ab",

a, b ~ ,~, and n i> 1, then Dw achieves the previously given upper bound of 21wl- 1
states (with 21wl- 1 edges), while M~ has only Iwl+ 1 states (and only Iwl+ 1 edges).
On the other hand, if w = ab"c, a, b, c ~ ,Y,, and n t> 1, then it is easily verified that
Dw = M~, and this automaton has 2[w I - 2 states and 31~1-4 edges as mentioned in
Section 1. The following theorem asserts that this is the worst case.

Theorem 3.1. If Iw[> 2, Mw has at m o s t 2lw[-2 states and 3[wl-4 edges, and at
least Iwl+ 1 states and Iwl edges.

Proof. For the upper bound, note that, by Lemma 1.5, for [w I > 2, D~ has 21wl- 1
states only when w = ab" for some a, b e ,Y. As mentioned above, M~ is small in
this case. For all other w of length greater than 2, Dw has at most 21w[-2 states
and 31w1-4 edges by Theorem 1.7, hence M~ is bounded in this manner as well.

The lower bound follows from the fact that M~ accepts a finite language and so
must be acyclic. Thus, there must be at least a state for each letter in w and a start
state, yielding a total of at least Iw[+ 1 states. Similarly, there must be an edge for
each letter in w. The string a" is a case where this bound is tight. []

By examining the differences between D~ and M~, we derive a way to modify
Algorithm A to produce an algorithm that builds M~, again on-line in linear time.
To begin, we look at how the states of M~ differ from those of D~.

Definition. Let -=" denote the canonical fight invariant equivalence relation on the
set of all subwords of w, i.e., x = - ' y if and only if, for all z~,Y*, xz is a subword
of w if and only if yz is a subword of w. For any word x, Ix] " is the equivalence
class of x with respect to ---' W "

By Nerode's theorem [15, 20], Mw has one state corresponding to each equivalence
class determined by - " , with the exception of the degenerate class (which is the
same as the degenerate class of --w). Further, since the equivalence classes deter-
mined by --w are right-invariant, each equivalence class [x]" (i.e., each state in
M~) is the union of one or more equivalence classes determined by -=~ (i.e., the
identification of one or more states in D~). A state corresponding to an equivalence
class [x]~ that does not contain the longest member of [x]" is called a redundant state.

The following definition and lemma give us a more precise characterization of
the redundant states of D~

Definition. stem(w) is the shortest nonempty prefix of tail(w) that occurs (as a
prefix of tail(w)) for the first time in a new left context. If no such prefix exists,
then stem(w) is undefined.

For example, stem(abcbc) = b, but stem(aba), stem(abc), and stem(abcdbcbc) are
undefined.

48 A. Blumer et al.

Lemma 3.2. (i) x represents a redundant state in D~ i f and only i f s t em(w) is defined

and x is a prefix o f tail(w) such that Ixl>>-Istem(w)].
(ii) I f w = uxy where xy = tail(w) and x represents a redundant state in D~, then

x = tail(ux) and x occurs for the first time in a new left context as tail(ux).

(iii) A n y two distinct redundant states in D~ are contained in two distinct states in

M~. (Hence any state in M~ contains at most two states in D~)

Proof. (i) ' I f ' part. Let s tem(w) be defined and let x be a prefix of tail(w) such

that]xl>-Istem(w)l. Clearly, x occurs as a prefix of tail(w) for the first time in a

new left context. Assume that every prior occurrence of x is preceded by the letter

a. Since x is not always preceded by a, ax is not in [x]~, and hence x represents
m f

[x]~. We will show that x =w ax. Assume to the contrary that there exists a z e •*

such that xz is a subword of w but axz is not. Consider the leftmost occurrence of

xz in w. Let w = ulxzu2 for this occurrence. Let w = wlxw2, where tail(w) = xw2. If

lu,I < [w~l, then ul must end in a, contradicting our assumption. However, if lu~] i> [wl{,

then xzu2 is a suffix of tail(w), and thus this cannot be the leftmost occurrence of

xz. This contradiction implies x-=" ax. It follows that [x]w is redundant.

'Only / f" part. Let y be the longest word in I x] ' . Since [x]w is redundant, lyl> Ix].
I Since x -- w Y, for any z ~ ,Y*, xz is a subword of w if and only if yz is a subword

of w. It follows that the leftmost occurrence of y in w ends in the same position as

the leftmost occurrence of x in w. Hence, x is a proper suffix of y, i.e., y = uax for

some u ~ ,Y*, a ~ ,Y, and the leftmost occurrence of x in w is preceded by a. There

must be an occurrence of x in w that is not preceded by a, otherwise x-=w ax,

contradicting the fact that x is the longest word in [x]~. Consider the leftmost

occurrence of x in w that is not preceded by a. Let w = w~xw2 for this occurrence.
! Let b be the last letter of Wl. Since xw2 is a subword of w and x =-~y, yw2 is a

subword of w. Hence, axw2 is a subword of w. It follows that xw2 occurs at least

twice in w. However, since this was the leftmost occurrence of x that was not

preceded by a, it cannot be the case that bxw2 occurs more than once in w. Thus,

xw2 = tail(w) and hence x is a prefix of tail(w). Further, since this was the first

occurrence of x not preceded by a, x is appearing for the first time in a new left

context, and so s t e m (w) i s defined and Ix]~]stem(w)[.

(ii) This follows easily from (i).

(iii) Let x and y represent two distinct redundant states in D~ and assume [yl >/Ixl.
Then, by (i), x and y are both prefixes of tail(w), hence y = xu for some nonempty

word u. Consider the leftmost occurrence of x in w. Let w = wlxw2 for this occurrence.

It is clear that xw2 is a subword of w but yw2 (= xuw2) cannot be a subword of w.

Thus, we cannot have x - "y and hence x and y are members of two distinct states
inM~. []

By the above lemma, every redundant state in Dw can be uniquely associated

with a nonempty prefix of tail(w) as described above and no two redundant states

Smallest automaton recognizing the subwords of a text 49

are contained in the same state in M~. Thus, if M is the number of states in Mw
and N is the number of states in D~, then M = N-(ltail(w)[-Istem(w)]+ 1) when
stem(w) is defined, otherwise M = N and hence M~ = D~, Since stem(w) is defined

only when tail(w) occurs for the first time in a new left context, there are many
cases when M~ = D~. One simple case is when the last letter of w is unique, since

in this case tail(w) = A.
Lemma 3.2 allows us to identify when redundant states are created by Algorithm

A. Specifically, by part (ii), the conditions that lead to a redundant state in Dw are

precisely those conditions that lead to the 'splitting' of an equivalence class in step

3(b), case (3) of procedure update in Algorithm A (Lemmas 2.1 and 2.3). Further-
more, the two states formed by the splitting of a state in D~ remain combined as

one state in Mw as w grows, as long as the conditions of Lemma 3.2(i) hold, i.e.,

as long as the corresponding redundant state in D~ remains redundant. Thus, to

modify Algorithm A so that it builds M~ we need to postpone the splitting of these
states during the construction as long as the conditions of Lemma 3.2(i) hold. To
do this, we need to know when the addit ion of a new letter a to w causes redundant

states in D~ to cease to be redundant in D~o. At this point, the states of M~ that

represent two states of Dw must be belatedly 'split' for M~o to be correct. The

conditions under which redundant states of D~ cease to be redundant in D~o are
given by the following lemmas.

Lemma 3.3. Assume tail(wa) = tail(w)a. Then i f D~ contains one or more redundant
states, [tail(wa)]wo is redundant and, for all other strings x, x represents a redundant
state in Dw~ if and only if x represents a redundant state in Dw. Otherwise, D ~ has
at most one redundant state, that state being [tail(wa)]~o, which is redundant if and
only if tail(wa) appears for the first time in a new left context.

Proof. By Lemma 3.2, when Dw contains one or more redundant states, stem(w)
must be defined. In this case, redundance of [tail(wa)]wo and the status of all other
states immediately follows from the fact that s tem(w)= stem(wa). When D~ does
not contain any redundant states, then stem(w) is undefined. Since tail(wa)=
tail(w)a, stem(wa) will also be undefined, unless tail(wa) occurs for the first time
in a new left context, in which case stem(wa) = tail(wa). The last part of the lemma

now follows. []

Lemma 3.4. I f tail(wa) ~ tail(w)a, then whenever x represents a redundant state in
D~, x no longer represents a redundant state in Dwa. In this case, Dw,, always has at
most one redundant state, that state being [tail(wa)]wo, which is redundant if and only
i f tail(wa) appears for the first time in a new left context.

Proof. Since tail(wa) ~ tail(w)a, tail(wa) must be a suffix of tail(w)a, not beginning
at the first letter of tail(w)a. Hence, any prefix of tail(wa) except tail(wa) itself is
a subword of tail(w) with an occurrence in tail(w) not beginning at the first letter

50 A. Blumer et at

of tail(w). Since there is a previous occurrence of tail(w) in w, any proper prefix
of tail(wa) has appeared before in the same left context as tail(wa), and cannot be
occurring for the first time in a new left context. Hence, by Lemma 3.2, D~o has
no redundant states unless tail(wa) appears for the first time in a new left context,
in which case tail(wa) represents the only redundant state in D~o. Since tail(wa)
starts in a later position than tail(w), tail(wa) cannot appear for the first time in a
new left context both as a suffix of wa and as a prefix of tail(w). Thus, tail(wa)
cannot represent a redundant state in both Dw and D~o. Hence, whenever x represents
a redundant state in D~, x no longer represents a redundant state in Dwo. []

The on-line algorithm for Dw is easily modified to give an on-line algorithm for
Mw by waiting to 'split' the redundant states until the point when they cease to be
redundant. Lemmas 3.3 and 3.4 tell us that the only time when the redundant states
of Dw cease to be redundant is when tail(w)a ~ tail(wa). This condition can be
recognized by the fact that [tail(w)]~ has no a-transition, which is checked during
the first iteration of the while loop in step 3 of procedure update in Algorithm A.
At the point when tail(wa)~ tail(w)a, all redundant states of D~ cease to be
redundant, and the refinement of the equivalence classes of D~ that was not done
for Mw must now be implemented for Mwo. This requires a little bookkeeping in
order to save the information needed to create new states until when they cease to
be redundant.

We introduce several global variables to Algorithm A to perform these bookkeeping
functions. The first, splits, refers to the number of prefixes of tail(w) that are of
length equal to or greater than the length of stem (w); that is, the number of redundant
states in the corresponding D~. The variable parent refers to the state that will have
a primary transition edge leading to the newly created state [stem (w)] when it ceases
to be redundant. Queue children consists of the states in Mw that contain redundant
states in Dw; that is, the states that will belatedly be 'split' when these states in D~
cease to be redundant. Queue oldsuflix contains states that were newsink at the time
when the corresponding state in children became redundant. It is necessary to keep
track of these, because when those states 'split', the suffix pointers will need to be
readjusted to point to the newly split off states.

We now give a description of Algorithm B, the algorithm to build M~ (see below).
Some stages of construction for w = abcbcd are illustrated in Fig. 4 and contrasted
with the corresponding stages of Algorithm A. Like Algorithm A, Algorithm B is
composed of three procedures, buiidma, update, and split. Buildma is identical to
builddawg, except that it has an additional step to initialize the global bookkeeping
variables splits, children, and oldsufftx. Split is also identical to the corresponding
procedure in Algorithm A, except that it sets one additional suffix pointer. This is
the suffix pointer from the first state popped off the queue oldsuOix. It corresponds
to the suffix pointer that is set in step 5 in the proc, cdure update 'in Algorithm A.

The version of update in Algorithm B incorporates the most significant changes
from Algorithm A. Like the version of update in Algorithm A, update takes the

Smallest automaton recognizing the subwords o f a text 51

current sink state ([w] k) and the letter a, and creates the new sink state for Mwa.

As in Algorithm A, the states on the ~ffix chain of [w]" are traversed and an
a-transition to the new sink state is added from each state encountered that does

not already have an a-transition. This occurs in step 3(b), case (1).
When the first state on the suffix chain is reached, if case (1) of step 3(b) is

encountered, some additional processing takes place. This first state is [tail(w)]"
so lack of an a-transition from this state indicates that tail(w)a is not a subword
of w, and hence tail(w)a # tail(wa). Thus, by Lemma 3.4, all redundant states in

Dw cease to be redundant and the corresponding states in Mw must be belatedly

split. In part (a), all the states containing redundant states from Dw are refined

using the subroutine split. The variable splits is used to count them, the queue
children is used to locate the states that must be refined, and the queue oldsufftx is

used to locate states whose suffix pointers must be readjusted. After this operation,

the variable splits is set to zero, indicating that there are no states of Mw that contain
redundant states of D~. At this point, the structure is essentially the same as the

partially updated structure for D , that would be present at the corresponding point
in step 3(b), case (1) of Algorithm A. This special processing is inhibited when ease

(1) arises for subsequent states in the suffix chain of [w]" since splits is set to zero.

When a state with an a-transition is found, this transition will lead to [tail(wa)] %.
It then becomes necessary to determine whether this state contains a redundant

state from the corresponding Dwo. This is done in step 3(b), cases (2) and (3), and
is also analogous to the processing performed in the corresponding steps in
Algorithm A.

In step 3(b), case (2), update checks to see if it is the case that [tail(wa)]'~ does

not contain a redundant state from D~Q. This is indicated by splits having a zero
value, and the a-transition to [tail(wa)]'~o being primary. When splits is zero, this

criterion reduces to the same one applied in the corresponding step of Algorithm

A to check if [tail(wa)]w does not need to be split. When splits is nonzero at this
point in update, it must be the case that tail(wa) = tail(w)a. Otherwise, the special

processing described above would have occurred on the first iteration of the while
loop that traverses the suffix chain, setting splits to zero. Since a value of one or

more for splits also implies that there is at least one redundant state in D~, [tail(wa)] wo
is redundant in this case by Lemma 3.3. Hence, [tail(wa)]:o always contains a

redundant state of Dw° when splits is greater than zero.
In step 3(b), ease (3), update handles the ease when [tail(wa)]L does contain a

redundant state from Dw~. This is indicated by a nonzero value of splits, or by a

secondary edge, i.e., the negation of the above condition for case (2). In this case,
splits is incremented to reflect the addition of a new state in M ~ that contains a
redundant state in Dw,.. The appropriate states are added to oldsufftx and to children
for later use when the redundant state s may cease to be redundant. If stem(w) is
undefined, then stem(wa) is tail(wa) and parent is given the value [tail(wa)]'o.

Finally, in step 5, update sets the suffix pointer of the new sink for M ~ to point
to [tail(wa)]'o and returns the new sink state it creates.

52 A. Biumer et al.

A description of Algorithm B in pseudocode is given below. Note that the variables
source, chiMren, parent, oldsuffm, and splits are global to all three procedures.

Mgorithm B

buildma (w)
1. Initialize the global queues children and oldsuffix to be empty, and set the

value of splits to 0.
2. Create a state named source and let currentsink be source.
3. For each letter a of w do:

Let currentsink be update(currentsink, a).
4. Return source.

update(currentsink, a)
1. Create a state named newsink and a primary edge labeled a from currentsink

to newsink.
2. Let currentstate be currentsink and let suJ~ixstate be undefined.
3. While currentstate is not source and suffixstate is undefined do:

(a) Let currentstate be the state pointed to by the suffix pointer of currentstate.
(b) Check whether currentstate has an outgoing edge labeled a.

(1) I f currentstate does not have an outgoing edge labeled a, then:
(a) For i -- 1 to splits, remove topchild and topsuffix from the front of

the queues children and oldsuOfx respectively, and let parent be
split(parent, topchild, topsuffix).

(b) If the 'for' loop above was executed, let currentstate be parent and
set splits = O.

(c) Create a secondary edge from currentstate to newsink labeled a.
(2) Else, if splits is 0 and currentstate has a primary outgoing edge labeled

a, then let sufftxstate be the state to which this edge leads.
(3) Else (splits > 0 or currentstate has a secondary outgoing edge labeled

a).

(a) Let suffixstate be the state that the outgoing edge labeled a leads
to.

(b) Increment the value of splits.
(c) If splits is 1, let parent be currentstate.
(d) Add sufftxstate to the end of the queue children and add newsink

to the end of the queue oldsuffix.
4. If suffixstate is still undefined, let suffmstate be source.
5. Set the suffix pointer of newsink to point to sufftxstate and return newsink.

split(parentstate, childstate, oldsufftxstate)
1. Create a state called newchildstate.
2. Make the secondary edge from parentstate to childstate into a primary edge

from parentstate to newchildstate (with the same label).

Smallest automaton recognizing the subwords o f a text 53

3. For every primary and secondary outgoing edge of childstate, create a secondary
outgoing edge of newchildstate with the same label and leading to the same state.

4. Set the suffix pointer of newchildstate equal to that of childstate.

5. Reset the suffix pointer of childstate to point to newchildstate.

6. Reset the suffix pointer of oldsuffixstate to point to newchildstate.
7. Let currentstate be parentstate.

8. While currentstate is not source do:
(a) Let currentstate be the state pointed to by the suffix pointer of currentstate.

(b) If currentstate has a secondary edge to childstate, make it a secondary edge
to newchildstate (with the same label).

(c) Else, break out of the while loop.
9. Return newchildstate.

Theorem 3.5. The smallest DFA for the set o f all subwords of a word can be built
on-line in linear time.

Sketch of proof. The above description of Algorithm B indicates how it can be
shown that this algorithm correctly constructs Mw on-line. Except for bookkeeping
functions, every operation performed by Algorithm B is an operation performed
for the corresponding word by Algorithm A, although these operations are often
performed in a different order. The linear time bound follows from the fact that the
only new operations performed by Algorithm B are those involved with the extra
bookkeeping. This bookkeeping is bounded by the number of splits that are delayed
in Algorithm B, which mustbe linear since Algorithm A is linear (Lemma 2.5). []

4. Further research

One possible direction for further research is to try to find an on-line linear-time
algorithm that builds the smallest partial DFA for the subwords of a finite set of
words. A natural extension of the DAWG construction algorithm to finite sets of
words is given in [7]. This gives a partial DFA for the subwords of the finite set,
with size bounds similar to those given in Theorem 1.7. However, the relationship
between the DAWG and the smallest partial DFA is more problematic in this case,
and there are no obvious modifications that would allow it to construct the smallest
DFA on-line in linear time.

Continuing further along this line, we might consider constructing the smallest
DFA for the subwords of an arbitrary regular language, perhaps given as a partial
DFA itself. However, here we run into a roadblock, because it can be the case that
the regular language has a DFA of size n, but the smallest DFA for the subwords
of the language has O(2n) states. A simple example is the language (a + b) na (a + b) nc,
where a, b, and c are distinct letters. Here, every word of length n over the letters
a and b falls into a different equivalence class with respect to the canonical fight

54 A. Blumer et al.

invariant equivalence relation for the subwords of the language, so the smallest
DFA for the subwords has at least 2" states, while the DFA for the language itself
has only 2n +3 states.

Other lines of research relate to implementations of the algorithms given here.
Problems arise when building DAWGs or smallest DFAs for very large texts due to

the size of the data structure for the automaton, which may be many times larger
than will fit in the main memory of the machine. Here we would like two things.
The first is a good estimate of how large the automaton is expected to be for a given
size text. We have some results of this type for random texts in the case when all
letters are independent and equiprobable, which we hope to present in a future
paper. The second thing is a good method for dealing with the disk 'thrashing'
problem when the automaton is too large to fit in main memory and must be built
using secondary storage. This is a problem that plagues algorithms for compact
position trees and their relatives as well (see [17]). As yet we have made no progress
in this direction.

Finally, one might consider applications of these automata to other text processing
problems beyond the simple string search mentioned in the introduction. Several
possibilities along these lines are briefly discussed in [7].

Acknowledgment

We would like to thank Ross McConnell for much help with the version of this
paper presented at ICALP-84 and for helpful discussions and programming efforts
in the early stages of this investigation. We would also like to thank Hermann
Maurer for his comments on [6], which led us to look at smallest automata for the
subwords of a word.

References

[1] V. Aho and M.J. Corasick, Efficient string matching: An aid to bibliographic research, Comm. ACM
18 (6) (1975) 333-340.

[2] A. Apostolic, o, Some linear time algorithms for string statistics problems, Publication Series III, 176
(IAC, Rome, 1979).

[3] A. Apostolico, Fast applications of suffix trees, in: D.G. Lainiotis and N.S. Tzannes, eds., Advances
in Control (Reidel, Hingham, MA, 1980) 558-567.

[4] A. Apostolico and F.P. Preparata, Optimal off-line detection of repetitions in a string, Theoret.
Comput. ScL 22 (1983) 297-315.

[5] A. Apostoli¢o, The myriad virtues of suffix trees, Pro~ NATO Advanced Research Workshop on
Combinatorial Algorithms on Words, Maratea, Italy, 1984.

[6] A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler and R. McConnell, Linear size finite automata
for the set of all subwords of a word: An outline of results, Bull Europ. Assoc. TheoreL Comput.
Sc/. 21 (1983) 12-20.

[7] A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler and IL McConnell, Building a complete inverted
file for a set of text files in linear time, Pro~ 16th ACM Syrup. on Theory of Computing (1984) 349-358.

Smallest automaton recognizing the subwords of a text 55

[8] J. Blumer, Correctness and linearity of the on-line directed acyclic word graph algorithm, Tech.
Rept. MS-R-8410, Univ. of Denver, Dept. of Mathematics and Computer Science, 1984.

[9] R.S. Boyer and J.S. Moore, A fast string searching algorithm, Comm. ACM 20 (10) (1977) 762-772.
[10] M.T. Chen and J. Seiferas, Efficient and elegant subword-tree construction, C.S. and C.E. Res.

Rev., Univ. of Rochester (1983/84) 10-14.
[11] M.T. Chert and J. Seiferas, Efficient and elegant subword-tree construction, Proc. NATO Advanced

Research Workshop on Combinatorial Algorithms on Words, Maratea, Italy, 1984.
[12] M. Crochemore, Optimal factor transducers, Proc. NATO Advanced Research Workshop on

Combinatorial Algorithms on Words, Maratea, Italy, 1984.
[13] M. Crochemore, Linear searching for a square in a word, Presented at: l l th Internat. Colloq. on

Automata, Languages, and Programming, Antwerp, Belgium, 1984.
[14] M. Crochemore, Personal communication, 1984.
[15] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation

(Addison-Wesley, Reading, MA, 1979).
[16] D.E. Knuth, J.H. Morris and V.R. Pratt, Fast pattern matching in strings, SIAM Z Comput. 6 (2)

(1977) 323-350.
[17] M.E. Majster and A. Reiser, Efficient on-line construction and correction of position trees, SIAM

J. Comput. 9 (4) (1980) 785-807.
[18] E.M. McCreight, A space-economical suffix tree construction algorithm, J. ACM 23 (2) (1976)

262-272.
[19] D.R. Morrison, PATRICIAmpractical algorithm to retrieve information coded in alphanumeric, J.

ACM 15 (4) (1968) 514-534.
[20] A. Nerode, Linear automaton transformations, Proc. Amer. Math. Soc. 9 (1958) 541-544.
[21] V.R. Pratt, Improvements and applications for the Weiner repetition finder, Unpublished manuscript,

1975.
[22] M. Rodeh, V.R. Pratt and S. Even, Linear algorithm for data compression via string matching, J.

ACM 28 (1) (1981) 16-24.
[23] A.O. Slisenko, String-matching in real time, Preprint P-7-77, The Steklov Institute of Mathematics,

Leningrad Branch, 1977 (in Russian).
[24] A.O. Slisenko, String matching in real time: Some properties of the data structure, Prim 7th Syrup.

on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science 64 (Springer,
Berlin, 1978) 493-496.

[25] A.O. Slisenko, Determination in real time of all the periodicities in a word, Sow. Math. Dokl. 21
(2) (1980) 392-395.

[26] A.O. Slisenko, Detection of periodicities and string matching in real time, Z Soy. Math. 22 (3)
(1983) 1316-1387; translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya
Matematicheskogo Instituta im. V.A. Steklov A N SSSR 105 (1980) 62-173.

[27] S.L. Tanimoto, A method for detecting structure in polygons, Pattern Recognition 13 (6) (1981)
389-394.

[28] P. Weiner, Linear pattern matching algorithms, IEEE 14th Ann. Syrup. on Switching and Automata
Theory (1973) 1-11.

