跳转至

AT_arc069_d [ARC069F] Flags 题解

你有 \(n\) 个旗子,第 \(i\) 个旗子可以插在数轴的 \(x_i\)\(y_i\) 位置处。请你最大化两个旗子之间的最近距离,输出最大值即可。

\(n\le 10^4,\ 1\le x_i,y_i\le 10^9\)

首先二分答案,问题转化为:要求任意两个旗子都至少距离 \(mid\) 长度,问是否可行。注意到这是一个 2-SAT 问题,但是边数很多,因此使用线段树优化建图即可。

注意:由于不能向自己连边,因此线段树必须维护排好序的序列,而不是(离散化后的)值域。

AC 代码
#include<iostream>
#include<algorithm>
using namespace std;
const int N1 = 1e4 + 10;
const int N2 = 2e4 + 10;
const int LOGN = 15;
const int V = 2e4;
const int N = 8 * V + N2;
const int M = 8 * V + 2 * N2 + 2 * N2 * 2 * LOGN;

struct Edge {
    int v, next;
} pool[M];
int ne, head[N];
int prene, prehead[N];

void addEdge(int u, int v) {
    pool[++ne] = {v, head[u]};
    head[u] = ne;
}

void save() {
    for(int i = 0; i < N; i++) prehead[i] = head[i];
    prene = ne;
}

void load() {
    for(int i = 0; i < N; i++) head[i] = prehead[i];
    ne = prene;
}

int n;
int a[N1][2];

int chd[8 * N2][2];

int num2[N2], cnt[N2], num[N2], inv[N2];
void lisanhua() {
    for(int i = 1; i <= n; i++) num2[i] = a[i][0];
    for(int i = 1; i <= n; i++) num2[i + n] = a[i][1];
    sort(num2 + 1, num2 + 1 + 2 * n);
    for(int i = 1; i <= n; i++) {
        int tmp = a[i][0];
        a[i][0] = lower_bound(num2 + 1, num2 + 1 + 2 * n, tmp) - num2;
        a[i][0] += cnt[a[i][0]]++;
        num[a[i][0]] = tmp;
    }
    for(int i = 1; i <= n; i++) {
        int tmp = a[i][1];
        a[i][1] = lower_bound(num2 + 1, num2 + 1 + 2 * n, tmp) - num2;
        a[i][1] += cnt[a[i][1]]++;
        num[a[i][1]] = tmp;
    }
    for(int i = 1; i <= n; i++) inv[a[i][0]] = a[i][1];
    for(int i = 1; i <= n; i++) inv[a[i][1]] = a[i][0];
}

int nn;
void build(int p, int l, int r, int tp) {
    if(l == r) {
        if(tp == 0) addEdge(p, 8 * V + inv[l]);
        else addEdge(8 * V + l, p);
        return;
    }
    int mid = (l + r) >> 1;
    chd[p][0] = ++nn; build(chd[p][0], l, mid, tp);
    chd[p][1] = ++nn; build(chd[p][1], mid + 1, r, tp);
    if(tp == 0) {
        addEdge(p, chd[p][0]);
        addEdge(p, chd[p][1]);
    } else {
        addEdge(chd[p][0], p);
        addEdge(chd[p][1], p);
    }
}

void addEdge_Range(int p, int l, int r, int ql, int qr, int s, int tp) {
    if(ql > qr) return;
    if(ql <= l && r <= qr) {
        if(tp == 0) addEdge(s, p);
        else addEdge(p, s);
        return;
    }
    int mid = (l + r) >> 1;
    if(ql <= mid) addEdge_Range(chd[p][0], l, mid, ql, qr, s, tp);
    if(mid < qr) addEdge_Range(chd[p][1], mid + 1, r, ql, qr, s, tp);
}

namespace tarjan {
    int n;
    int dfn[N], low[N], dt;
    int col[N], bccCnt, sta[N], top;
    void clear() {
        for(int i = 1; i <= n; i++) dfn[i] = low[i] = col[i] = 0;
        dt = top = bccCnt = 0;
    }
    void dfs(int u) {
        low[u] = dfn[u] = ++dt;
        sta[++top] = u;
        for(int e = head[u]; e; e = pool[e].next) {
            int v = pool[e].v;
            if(!dfn[v]) {
                dfs(v);
                low[u] = min(low[u], low[v]);
            } else if(!col[v]) {
                low[u] = min(low[u], dfn[v]);
            }
        }
        if(dfn[u] == low[u]) {
            ++bccCnt;
            while(sta[top + 1] != u) {
                col[sta[top]] = bccCnt;
                --top;
            }
        }
    }
    void run() {
        for(int i = 1; i <= n; i++) {
            if(!dfn[i]) dfs(i);
        }
    }
}

using tarjan::col;

bool check(int mid) {
    load();
    for(int i = 1; i <= n; i++) {
        int tl = lower_bound(num + 1, num + 1 + 2 * n, num[a[i][0]] - mid + 1) - num;
        addEdge_Range(1, 1, 2 * n, tl, a[i][0] - 1, 8 * V + a[i][0], 0);
        addEdge_Range(4 * V + 1, 1, 2 * n, tl, a[i][0] - 1, 8 * V + a[i][1], 1);
    }
    for(int i = 1; i <= n; i++) {
        int tl = lower_bound(num + 1, num + 1 + 2 * n, num[a[i][1]] - mid + 1) - num;
        addEdge_Range(1, 1, 2 * n, tl, a[i][1] - 1, 8 * V + a[i][1], 0);
        addEdge_Range(4 * V + 1, 1, 2 * n, tl, a[i][1] - 1, 8 * V + a[i][0], 1);
    }
    tarjan::clear();
    tarjan::run();
    for(int i = 1; i <= n; i++) {
        if(col[8 * V + a[i][0]] == col[8 * V + a[i][1]]) return false;
    }
    return true;
}

int main() {

    cin >> n;
    for(int i = 1; i <= n; i++) cin >> a[i][0] >> a[i][1];

    lisanhua();

    nn = 1; build(1, 1, 2 * n, 0);
    nn = 4 * V + 1; build(4 * V + 1, 1, 2 * n, 1);
    save();

    tarjan::n = 8 * V + 2 * n;

    int l = 0, r = 1e9 + 10;
    while(l < r) {
        int mid = (l + r + 1) >> 1;
        if(check(mid)) {
            l = mid;
        } else r = mid - 1;
    }

    cout << l << '\n';

    return 0;
}